Innovators for electromobility and automated driving

PCB and packaging technologies for electric/hybrid drives and driver assistance systems

Electromobility
AT&S expects growth in electromobility applications in the near future and is focusing on embedded power technologies. Source: AT&S

Electromobility and automated driving are the two defining trends in the automotive industry with high growth potential, but also technological challenges. For example, hybrid and/or electric powertrains require, among other things, efficient power electronics for the major subsystems such as inverters, on-board chargers or DC/DC converters. Finally, the implementation of electromobility also requires efficient, space-saving and reliable connection and packaging solutions. On the other hand, new high-performance sensor systems with sensor fusion and high-speed communication are required along the way to autonomous driving, all whilst maintaining functional safety and security. AT&S addresses all of these key automotive trends with innovative connection and packaging solutions.

Efficient power

Electromobility continues to make headway, driven by legal requirements in all key regions – led by China. To date in the EU, the target of 95 g CO2/km has been the fleet average for 2021. According to a recent EU compromise, new cars in the EU are to emit another 37.5 % less carbon dioxide by 2030 than in the comparable year 2021. This cannot be achieved without high-voltage electrification and mild hybrid vehicles with a 48V on-board power supply – and this is where efficient power electronics play a central role. The company expects above-average growth in electromobility applications over the next few years and is focusing here amongst other things on embedded power technologies – in other words, the embedding of power semiconductors such as Mosfets in PCBs. Key benefits of ECP (embedded component packaging) over conventional PCB assembly include significant miniaturization thanks to higher integration, improved reliability and superior thermal performance. In addition, ECP facilitates integrated EMI shielding and supports the adaptation of different coefficients of thermal expansion (CTE) for rapid and easy system integration.

As silicon-based solutions slowly reach their limits, the use of wide-band gap materials such as GaN promises more efficient power conversion, with higher efficiency and higher power density. Working closely with partners, the company has reduced both the dimensions and the cost of these new components, thereby contributing to the faster adaption of the new technologies.

High-speed communication and sensor fusion

The second megatrend in the automotive industry is automated driving. Automated or autonomous driving constitutes a great potential for the microelectronics industry. By way of illustration, the PCB market for these applications is currently growing at around 5.5 % per annum. By 2020, the proportion of costs of electronic components in cars is expected to rise to 35 %, and even to 50 % by 2030 (source: Statista 2018).

With the increasing degree of automation and thus more sophisticated advanced driver assistance systems (ADAS), the need for sensors and different sensor technologies is also increasing in cars. Whilst a combination of camera and radar systems is sufficient up to level 2, from level 3 lidar also plays a crucial role.

Due to the ever-higher frequencies such as for the radar, the traces on the circuit boards must also be regarded as RF components and designed accordingly. The company is a specialist in this field and has developed PCBs that deliver the necessary and also cost-efficient performance in the frequency range up to 80 GHz. For example, these technologies form the basis for high-performance radar components (long-range radar with 77/79 GHz) in advanced driver assistance systems – an indispensable prerequisite for autonomous driving.

The key criteria is a fast, interference-free signal transmission with minimal losses. The losses can be divided into dielectric, resistive, reflection-based and losses generated by emissions. For example, the RF signal in the PCB is influenced by various parameters such as conductor length, base material (loss factor and dielectric constant), reflections due to drilling, impedance matching, crosstalk and interference from external sources (EMC shielding).

The company addresses all these aspects. By way of example, they are working on new materials to further reduce the dielectric constant and the loss factor. Other innovative solutions include for example very thin copper foils with low roughness (with sufficient adhesion) for maximum speed or asymmetric hybrid or sandwich structures (e.g. FR4 for the digital layer and ceramic materials such as PTFE for the high-speed layer) for cost-effective PCB technologies up to frequencies of 80 GHz.

www.ats.net

Advertisement

Current Issue

Titelbild EPP EUROPE Electronics Production and Test 4
Issue
4.2019
READ
ARCHIVE

Headlines

Newsletter

Subscribe to our newsletter now

Whitepapers

Find all current Whitepapers

Videos

Here you can find all current videos

Advertisement

Industrie.de Infoservice

Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de